
Identifying challenges for a productive and

sustainable Open Source ecosystem

Jens Hardings Perl
Pontificia Universidad Católica de Chile

<jhp@ing.puc.cl>

February 23, 2007

Abstract

Open Source can be seen as an ecosystem in which all participants
fulfil a role that keeps the equilibrium. When this equilibrium is altered,
the ecosystem faces a challenge that can be overcome through specific
countermeasures. We present a way to characterize the specific threats
and identify possible countermeasures, as well as its effectiveness, using
a risk analysis and handling the threat as an attack. This way, the com-
munity can be prepared to identify and face current and future challenges
effectively. This document presents the methodology and some basic char-
acterizations of some attacks, as well as the future work necessary to com-
plete the work. The methodology proves to be useful to identify several
threats and prepare the community to use its scare resources effectively
to overcome current and future challenges.

1 Introduction

The participation of IT enterprises in the Open Source communities has been
a big breakthrough in the last few years. The consequences of this trend are
far from clear and, as the businesses models evolve, the interactions will be
changing, and new challenges are likely to be emerging.

Open Source development has established itself as an ecosystem in which
several participants with differing interests collaborate to achieve personal goals,
achieving better results than without collaboration. While the concept of an
ecosystem can be applied to several business strategies (Iansiti and Levien,
2004) and software in the general sense (Messerschmitt and Szyperski, 2003),
it makes particular sense to analyze it in the context of Open Source Software
(Healy and Schussman, 2003; Aigrain, 2005; Kaplan, 2005; Golden et al., 2006;
Samuelson, 2006). The better results obtained by Open Source Software are
due to an equilibrium or balance in the open source ecosystem. Any alteration
of this equilibrium might change the rules for one or more participants, possibly

1



making it less attractive to keep participating and thus threat the sustainability
of the whole system.

As businesses have to satisfy stackholders’ demand, a strategy that allows
the enterprise to achieve a competitive advantage over the competition will be
pursued. This is true even if that particular strategy implies unfair consequences
to some of the participants, or even the possibility of breaking the open source
ecosystems equilibrium which might cause a greater damage in the long term
to all participants.

It makes sense to analyze how fragile the open source ecosystem is against
the actions of individual or groups of participants seeking personal profit, and
whether it is possible to make this ecosystem more resilient when facing the
challenges posed by these individuals.

2 Proposed methodology

A good methodology for analyzing the interactions that can occur is a risk
analysis similar to Cryptanalysis: identify an attack, risk or threat to the system
that shows some weakness, analyze how far the attack can be taken, and propose
measures to avoid or react when facing such an attack.

The attacker or source of a threat can be any person that might participate
or interfere with the open source ecosystem. In practice, anybody with the right
motivation to take actions. A motive can be to increase personal benefits, force
a specific path to be taken, or even to terminate a project to benefit from the
demand for a substitute product.

The measures used to avoid, identify or react to an attack can be of several
kinds. Lessig (Lessig, 2000) identifies four dimensions in which it is possible to
influence actions in the context of cyberspace:

Social even when no direct economic or legal punishment is attached to certain
behavior, the condemnation of their peers is enough in many cases to avoid
it.

Technological sometimes, technological measures make it difficult or even im-
possible to persist on an action.

Legal not conforming with legal norms makes one subject to punishment due
to fines or even prison.

Economic changing the economic differences between two choices has a great
impact.

Each of these measures also have its costs, so each time the community uses
them, the general cost of developing software using open source methodologies
also tends to increase, making the whole model slightly less appealing.

When describing an attack and possible countermeasures, they might be
categorized including following aspects:

2



• Attacker and his objective

• Cost (negative consequences) of the attack

• Probability of the attack (Risk)

• Specific known or hypothetic cases

• Possible countermeasure, detection or avoidance

• Effectiveness of the countermeasures

• Cost of the countermeasure(s)

3 Identification of existing attacks

Even when they are not regarded as attacks, we can find several situations where
the continuity of projects, and in some cases of the whole open source ecosystem
has been threatened, and in many cases, countermeasures have been evaluated
and implemented.

3.1 Excessive Free Riding

This is the most obvious and well-known threat to Open Source. However, free
riding is also one of the main strengths of the open source model. The rules are
not as rigid as to demand certain amount of retribution from each user, but the
ecosystem’s equilibrium demands a certain amount of participation from the
overall user population.

When free riding becomes so extreme that the burden of developing the
software is paid by only a few actors, they might be inclined to not continue
sharing their contributions. This would be an attack that threatens the ecosys-
tem’s continuity. We can identify two different types of free riding. One is when
end users of software do not participate in any way in the community, but the
other is for users that also have the capability and effectively are modifying the
source code and decide to not share those modifications.

3.1.1 End users free riding

These are users who would not normally engage in modifying the project, but
might contribute in other ways. These include a number of possible actions,
from bug reports, participation in user groups and advocacy to money donations
in order to improve the project. While a typical open source project subsists
with only a few users being active, the sum of those needs to fulfill a minimum
threshold.

The characterization of an attack consisting of passive users is the following:

Attacker and his objective the attacker in this case would be the end users,
who are only interested in getting the software and not worrying about
any other aspect of the project.

3



Cost (negative consequences) of the attack a project with no active users
will not be able to move since every effort will be on behalf of the main
developers, without any help or at least feed back. The project would
stagnate and be inactive, lacking any support and probably leading to
“bit rot” because changes in architectures and related projects might lead
to problems that need to be solved, and nobody will be around and capable
of solving them efficiently.

Probability of the attack (Risk) the risk would be higher in projects that
tackle specific problems and do not fit into an incremental development
style. Most projects however, are said to be “scratching an itch” and thus
do not fall into this category, so the probability is relatively low.

Specific known or hypothetic cases any software that solves its particular
niche problem well enough not to be of interest of further improvements.

Possible countermeasure, detection or avoidance economic incentives do
work well, since it keeps somebody focused on providing support. Com-
mercial software distributions play an important role in this area. In other
cases, social measures like acknowledgement

Effectiveness of the countermeasures Since the economic countermeasures
depend on vendors, they might be restricted to particular configurations
and leave other aspects (e.g. less popular hardware architectures) without
support. The social countermeasures depend on the effective interest of
the users, which is generally not too high or the problem would not exist
in the first place.

Cost of the countermeasure(s) the countermeasures are self-sustained, but
may require personal sacrifice which is less robust.

3.1.2 Developers/Business free riding

While it is reasonable to base a business model on open source software projects,
an abuse is to take an available open source software and use it for profit while
avoiding to contribute back to the community. This behavior might be within
the letter of the license, but outside of its spirit.

The characterization of this attack is the following:

Attacker and his objective the attacker is a vendor that uses open source
software and withholds all income, without contributing innovations, main-
tenance, documentation or other means back to the community.

Cost (negative consequences) of the attack the developers taking the bur-
den of maintaining and improving the project might get tired of subsidizing
third parties and decide to abandon the project.

Probability of the attack (Risk) certainly some form of this kind of free
riding will be present in all successful open source projects. It is expected

4



that free riders understand that their contribution is in their own interest
and commit resources over time to contribute back. So the attack is always
present but it will probably continue to be within reasonable bounds.
Exceptions might be niches in which very few vendors participate, and
the actions of one might have a big impact.

Specific known or hypothetic cases an enterprise dedicated to install and
charge customers for a CMS developed as an open source project under
the GPL license. In some cases, vendors have used such systems and
even made changes to it, charging customers for the service. This is legal
because the license requires to deliver source code only when a distribution
of the software occurs, but not an intended consequence.

Possible countermeasure, detection or avoidance the continous analysis
of business models and how they relate to the open source project’s ecology
will give the attackers in this case an insight and avoid the problem. Also,
social pressure on behalf of the community, and economic pressure on
behalf of customers will achieve great results. In the long run, changes to
licenses so abusive behavior is correctly excluded in its wording will help.
This is the case of some proposed changes in the transition from GPLv2
to GPLv3.

Effectiveness of the countermeasures while all of the presented counter-
measures are relatively effective on its own, the best way to achieve results
is to make a coordinated effort to deploy them all, in their respective time
frames.

Cost of the countermeasure(s) it is necessary for someone to update the
knowledge on business models related to open source, and to publicize the
findings. The research community has an important role in this regard. It
also requires coordination of efforts, because the various countermeasures
have to be taken by different actors.

3.2 Imposition of personal agendas

In this case, the attacker might even be the leader of a software project, but
it might as well be an outsider. The objective of the attacker is to impose its
personal agenda over the interests of the other participants. The reasons to do
so can be varied, but do not really make a difference.

We have seen many cases where projects have had problems, in which the
project leaders did have important discrepancies with developers. EGCS forked
from GCC in 1997 and was kept as a separate project until 1999, where both
branches were merged. Emacs and its 1991 fork XEmacs are still maintained
separately, due to differences in the development model. X.Org also starts as a
fork from XFree86, following a series of discrepancies and a license change.

As seen in the examples, the solution in the extreme cases is to create a
fork to the conflicting project, creating a competition in which the users get to

5



decide which project they choose. However, this is a costly countermeasure and
is generally used only as a last resort. The mere existence of using this possibility
creates enough pressure on the project leaders to settle the problematic issues
in many cases.

Certainly valid differences in engineering or legal aspects in a project may
be the cause of a split into two coexisting and competing projects. However,
in such cases it would be expected that both projects acknowledge each other’s
justification and objective differences. When this is not the case and the projects
either start ignoring each other or, even worse, discrediting the other with no
reasonable arguments, the confusion and frustration among users is a cost that
is a consequence of this kind of attack. This cost is real even when the reasons
of a split might otherwise be justified, but might be classified as another attack
(see next section for an example).

The characterization of this attack is the following:

Attacker and his objective the attackers in this case are the leaders of the
project. The objectives can be varied, but generally of some personal
belief or whish for power or acknowledgement.

Cost (negative consequences) of the attack the cost of an unnecessary fork,
users being scared away from the particular project or from open source
projects in general.

Probability of the attack (Risk) for this kind of attack to materialize, the
project needs to have a particularly strong leadership centered in one
person, and some opposition that is just as strong and opposed.

Specific known or hypothetic cases EGS vs GCC, Emacs vs XEmacs, XFree86
vs X.org.

Possible countermeasure, detection or avoidance In this case, the main
cost is also the solution to the problem: a fork.

Effectiveness of the countermeasures Due to the relatively high cost of a
fork, the solution might be overly delayed, and during that time the project
might stagnate.

Cost of the countermeasure(s) The cost is that the users and developers
get divided into two groups, probably diminishing their weight when com-
pared to other, possibly non-Open Source, projects.

3.3 Lack of accurate and updated information or docu-
mentation

Lack of accurate and updated information can be frustrating, just as the lack or
inaccuracy of documentation. In this attack we also include the overwhelming
amount of differing information from several sources.

6



Soluciones: una fuente de información neutral que de cuenta (overview) de
la existencia de los demás proyectos. Wikipedia es un excelente candidato.
Ejemplos: ghostscript.

The characterization of this attack is the following:

Attacker and his objective the attackers are the project leaders who do not
deliver objective information and intend to ignore or block competing
projects. In other cases, legal, technical or economical constraints make
it necessary to create forks that confuse the user with too many choices.

Cost (negative consequences) of the attack users do not have the right
information to choose the right project, might take the wrong choices or
decide to use to non open source solutions.

Probability of the attack (Risk) in the course of competition, it can be
easy to loose composure and fall into the described behavior.

Specific known or hypothetic cases the Ghostscript interpreter has several
versions, including AFPL Ghostscript (formerly Alladin Ghostscript), GPL
Ghostscript, GNU Ghostscript, ESP Ghostscript and Artifex (proprietary)
Ghostscript. In another area, the TeX/LaTeX document system has sev-
eral differing packages useful for creating presentations, forcing a user to
make a through analysis before deciding which one to use.

Possible countermeasure, detection or avoidance what the user needs is
accurate, neutral and trustworthy information.

Effectiveness of the countermeasures Once the user gets the necessary in-
formation from a trusted source, the problem disappears.

Cost of the countermeasure(s) The cost of creating the information is very
low, but the hard part is to make it available to the user from a reliable
source. Wikipedia is a good place in most cases, particularly to find the
information on the Ghostscript packages.

3.4 Development Speed

As big enterprises can devote huge amounts of effort to a single project, this
project might find itself overwhelmed with contributions from the people acting
on behalf of the enterprise. In this case, the project might be following a path
before even having the time to analyze whether that direction is right. It can be
seen as a way of imposing an agenda, but where the original project is almost
hijacked by certain participants.

While development speed might be a valid business strategy for an enterprise
leading a project (any potential free rider has at least to be able to keep up
with the development speed), it can also be a problem when the costs for the
ecosystem is higher than the benefits of an increased innovation pace.

The characterization of this attack is the following:

7



Attacker and his objective the attacker is an enterprise that is either eager
to get the project going, or intends to influence the direction the project is
following. The initial leaders loose their influence on the project because
of lack of resources to compete with the enterprise.

Cost (negative consequences) of the attack if the enterprise puts its in-
terests on top of the community’s, the users will have to face the problems
until they can be recover the ownership of the project or create a fork,
having to devote important resources to do so.

Probability of the attack (Risk) as interest of enterprises in open source
continues, and as the behavior of some has been in the past, it is likely
that several projects might suffer this kind of attack.

Possible countermeasure, detection or avoidance the community main-
taining the project needs to enforce their rules for a fair participation of
all involved members.

Effectiveness of the countermeasures while the community can impose its
view on how the project will continue, it is also true that the enterprise
is part of the community. It might be less clear how much this particular
participant should weigh compared to others, so the effectiveness might be
lower in some cases. In those cases, it might be worth to split the project
when the community has two or more differing views.

Cost of the countermeasure(s) the main cost is to create clear and effective
governance rules before any problems are encountered.

3.5 Forms of vendor lock-in

Customers being dependent on a particular vendor have always been a dream for
the vendor benefiting from this situation, and a nightmare for the rest. While
Open Source software tends to provide a solution to the vendor lock-in based
on acces to source code, alternative ways to lock customers to a specific vendor
are constantly being developed. Some of these alternatives can be considered
an attack to the ecosystem, and may require actions. Some of these alternatives
are Digital Rights Management, which are being targeted by licenses such as
GPLv3.

The characterization of this attack is the following:

Attacker and his objective the attacker is an outside vendor who uses an
open source software and forces by legal and/or technical means to depend
on this vendor to provide future services or updates.

Cost (negative consequences) of the attack the customers loose their abil-
ity to change the provider and continue to use the software or service, mak-
ing the open source software less appealing in comparison to proprietary
alternatives.

8



Probability of the attack (Risk) the risk is high, because vendors always
try to make customers return to them for new services and maintenance,
locking the competition out.

Specific known or hypothetic cases one particular example is the TiVo, in
which the Linux kernel is modified and used in a specific device. When
the user intends to change the kernel and load it into the same device,
it will not load until the vendor authorizes the modified version through
a digital signature. This way, the vendor retains control over the device,
leaving the customer locked into his services.

Possible countermeasure, detection or avoidance countermeasures include
legal changes to licenses as to avoid the described behavior, social mea-
sures pressuring to avoid that behavior, or economic measures by boicott
or other means.

Effectiveness of the countermeasures the legal measures such as license
changes might be effective, but cannot be implemented in a short time
span. Social measures can be effective, but the most notorious are the
economical measures.

Cost of the countermeasure(s) All of the proposed changes (legal, econom-
ical and social) require big coordination efforts.

3.6 Copyleft violations

Copyleft violations are a special type of “Business free riding” attack, with the
same negative impact. It is hard to identify violations and to take the necessary
actions to correct the situations. In some cases, it requires buying products for
reverse engineering and determining whether a violation might be happening.
Also, the accusation can only be made by some author of the code, not a third
party.

The characterization of this attack is the following:

Attacker and his objective the attacker is a third party who wants to get a
free ride by using an open source project without complying to the license.

Cost (negative consequences) of the attack the community does not re-
ceive the contributions it is expecting. However, it is to be noted that
other communitites choose not to assert a copyleft by using a license that
does require it. This way, the cost of the attack is comparable to have
chosen another license. For some projects this might be significant. One
important point is that if no actions are taken to prevent this kind of mis-
behavior, the cost will increment over time and it will be ever more difficult
to take action once the gpl violation has become a common practice.

Probability of the attack (Risk) as prooven by the gpl-violations.org project,
100 cases were discovered and resolved in the first two years, most of all

9

http://gpl-violations.org/


in the embedded networking market. The risk is high, mainly due to
misinformation and ignorance.

Specific known or hypothetic cases gpl-violations.org registers over 100 cases.

Possible countermeasure, detection or avoidance contacting the infringers
has proven to be effective, but when this fails, legal procedures have been
the alternative path.

Effectiveness of the countermeasures Considering both countermeasures they
have solved 100% of the cases that have been detected so far. It is unknown
how many gpl violations are continuing undetected, but we can speculate
that the higher impact (and thus, cost) violations will be detected.

Cost of the countermeasure(s) the countermeasures have had a high per-
sonal cost for the leader of gpl-violations.org, considering investment in
hardware, time and legal resources. Creating an organization with re-
quired funding is a useful step.

3.7 Software Patents

Software Patents have been an issue in open source licensing for a long time.
They are one of the most serious threats to the open source development model,
and several strategies are in place to counter it.

The characterization of this attack is the following:

Attacker and his objective vendors or other providers who see open source
projects, either in general or a particular project, as a threat to their
business. Also, third parties who just intend to profit from patents or
promoters of patents as a way to foster innovation.

Cost (negative consequences) of the attack in the worst case scenario, open
source projects might be barred from implementing particular solutions,
since its licensing scheme is incompatible with patent licensing which re-
quires a payment per copy.

Probability of the attack (Risk) the probability is very high. Software patents
exist in the US and are a constant threat in Europe. The outcome of the
european chapter will have a profound impact on the rest of the world.

Specific known or hypothetic cases over 30.000 software patents exist in
Europe, and 16.000 new software patents are granted each year in the US.

Possible countermeasure, detection or avoidance software patents require
continuous efforts, and several strategies are in place. Some intend to in-
flucence the political decisions and barring software patents.

Others are using the very same software patents as a weapon (defensive
patents) to impede third parties to enforce their own. Examples of this
are the Patent Commons Project and the Open Innovation Network.

10

http://gpl-violations.org/
http://gpl-violations.org/


Social/economic measures are also in place, requesting enterprises working
with open source communities to open up their patent porfolios.

Effectiveness of the countermeasures In europe, the work of software patent
opponents has been succssful so far in the political arena. In the US it
will be far more difficult because software patents are already a reality.
However, if this approach is successful, it could be a definitive solution.

It is currently unknown whether projects like Open Innovation Network or
Patent Commons will be successful, since their results are only measurable
in the long run and once they have achieved a critical mass of patents in
their portfolios. The results are more effective sooner, but they are not
definitive and require constant activity to keep being effective.

Social/economic measures have proven moderately effective, with various
enterprises holding many patents to offer at least a fraction of them un-
der terms compatible with open source software. These efforts have the
most immediate effect, and if they are successful, they can be used as an
argument for the political efforts.

Cost of the countermeasure(s) The cost for avoiding patents on the polit-
ical arena is very high, requiring the concerted effort of many people in
the long run to influence the political decision makers. Similar efforts are
necessary for the patent porfolio efforts and the social/economic measures,
but taking into account that the results are visible sooner.

3.8 Trademark attacks

Other attacks can be the usage of trademarks, in which a project is forced to
change its name.

The characterization of this attack is the following:

Attacker and his objective vendors or other providers who see open source
projects, either in general or a particular project, as a threat to their busi-
ness. Third parties who want to take advantage of a particular situation.

Cost (negative consequences) of the attack in the worst case scenario, open
source projects might be barred from implementing particular solutions.
In general the projects can be forced to change their names or cannot
use the commercial and well-known names for protocols or formats they
implement, as well as other annoyances to users and developers.

Probability of the attack (Risk) the probability is very high. As a mat-
ter of fact, several attacks are in place right now. A recent example is
the change of the “ethereal” software to “wireshark” due to differences
between the maintainer and its ex-employer who holds the trademark to
“ethereal”.

11



Specific known or hypothetic cases Cease and desist letters have been re-
ceived which threat the continuity of several projects because of trade-
marks, forcing name changes.

Possible countermeasure, detection or avoidance changing the name of
the software project or implemented protocol generally avoids the problem.

Effectiveness of the countermeasures the name changing is generally very
effective.

Cost of the countermeasure(s) The main cost a name change is the need
to inform every user to avoid confusions in the future. In some cases, such
as when the name of a protocol cannot be used to name an open source
project, an end user may have difficulties to identify a solution because the
name is less obvious. In the ethereal case, the name change was relatively
painless, and information sources such as software project indexes and
others are helpful to provide accurate information to users looking for a
specific project under the old name.

3.9 Marketing and Information attacks

Vendors that are being threatened by open source software that competes with
its products may defend themselves quite aggressively. This has happened in
the past and will continue in the future. The community has been reacting
to those attacks, labeled as “Fear, Uncertainty and Doubt” (FUD) speech, by
providing correct and timely information. In this case, the countermeasures are
both social and economic, the latter by addressing the market directly.

The characterization of this attack is the following:

Attacker and his objective the attacker are vendors and others interested
in moving users away from open source projects to the software they have
their interest in. The attacks can be directed towards a particular project
or towards open source software in general.

Cost (negative consequences) of the attack users can be effectively driven
away due to fear of using open source software.

Probability of the attack (Risk) several attacks of this sort have been iden-
tified in the past, and it is likely that they will continue to appear in the
future.

Specific known or hypothetic cases general attacks have been identified against
the GPL license and its copyleft characteristic, as well as against operating
systems built around the Linux kernel.

Possible countermeasure, detection or avoidance it is necessary to pro-
vide users with accurate, objective and justified information to compensate
the rumors and misinformation they receive. This way the users will take
the right choices for the right reasons.

12



Effectiveness of the countermeasures the effectiveness depends directly on
the quality of the information. Since open source projects and open source
in general do not have marketing departments, the alliance with enter-
prises interested in open source is of vital importance to get the message
through. But at least as important is the activity of open source commu-
nity participants an researchers to provide the hard facts to back up any
marketing effort in this regard.

Cost of the countermeasure(s) the personal cost of the countermeasures
can be high, since many attacks require immediate response. The ex-
istance of foundations and other organizations that can react upon this
sort of attack is important as the reaction does not depend on particular
people.

3.10 Lock open source projects out of niches

Vendors fearing that open source might take away their business can target
open source projects by locking them out of a particular niche. This lock out
generally consists of a full artillery of measures, including at least legal, economic
and technical aspects.

The characterization of this attack is the following:

Attacker and his objective the attacker is generally a vendor providing a
complete solution for a particular niche. The attacker intends to control
that niche, impeding that users can switch to other providers in general,
or to open source solutions in particular.

Cost (negative consequences) of the attack open source software may be
effectively barred from participating in a particular niche, and users have
less choice.

Probability of the attack (Risk) the risk is high, and we can identify at
least one specific case going on presently.

Specific known or hypothetic cases Digital Rights Management (DRM) is
probably the best example for this kind of attack. Although it is not
targeting open source, one of DRM’s consequences is the impossibility of
end users to use open source software to access specific data.

Possible countermeasure, detection or avoidance as well as the attack,
the countermeasures need to use all of the available resources.

Effectiveness of the countermeasures this kind of attack takes a relatively
long time to develop, so no hard data is available to conclude on its effec-
tiveness.

Cost of the countermeasure(s) the countermeasures require coordination
of several efforts during a long time.

13



4 Conclusions and future work

The proposed methodology allows the community to be more aware of current
and future challenges, making it possible to devote efforts where they will have
the highest impact. However, the enumeration and description of the challenges
presented in this paper are far from complete and accurate, since they present
only a first approach. It is necessary to backup the presented data using hard
empirical data and make a more detailed analysis of these and other challenges.

According to the preliminar data presented, we can predict that in several
cases the countermeasures can be very simple to implement and have predictable
results with a low cost. In these cases, it is useful to avoid wasting resources in
other efforts, so the analysis is valuable.

However, other challenges are more serious and require the use of all axes (so-
cial, legal, technological and economic) during an extended time period. While
some of them may provide positive results in a shorter time period, it is impor-
tant to not only keep on with the other axes, but to identify the best way to
coordinate them in order to minimize the required effort and maximize the out-
come. This coordination should also be specified in the future detailed analysis
of these challenges.

References

Aigrain, P. (2005). Libre software policies at the european level. In Feller, J.,
Fitzgerald, B., Hissam, S., and Lakhani, K. R., editors, Perspectives on Free
and Open Source Software, chapter 23, pages 447–459. MIT Press.

Golden, T., Larsen, S., Merling, L., Aitken, A., Fan, B., and Olson, G. (2006).
Sdforum: The future of commercial open source think tank summary report.
Technical report, Olliance Group.

Healy, K. and Schussman, A. (2003). The Ecology of Open-Source Software
Development. http://opensource.mit.edu/papers/healyschussman.pdf.

Iansiti, M. and Levien, R. (2004). Strategy as ecology. Harvard Business Review.

Kaplan, J. (2005). Roadmap for open ict ecosystems. Technical report, Berkman
Center for Internet & Society, Harvard Law School.

Lessig, L. (2000). Code and Other Laws of Cyberspace. Basic Books.

Messerschmitt, D. G. and Szyperski, C. (2003). Software Ecosystem: Under-
standing an Indispensable Technology and Industry. MIT Press.

Samuelson, P. (2006). IBM’s pragmatic embrace of open source. Communica-
tions of the ACM, 49(10):21–25.

14


	Introduction
	Proposed methodology
	Identification of existing attacks
	Excessive Free Riding
	End users free riding
	Developers/Business free riding

	Imposition of personal agendas
	Lack of accurate and updated information or documentation
	Development Speed
	Forms of vendor lock-in
	Copyleft violations
	Software Patents
	Trademark attacks
	Marketing and Information attacks
	Lock open source projects out of niches

	Conclusions and future work

